Lower bounds on nonnegative rank via nonnegative nuclear norms
نویسندگان
چکیده
منابع مشابه
Lower bounds on nonnegative rank via nonnegative nuclear norms
The nonnegative rank of an entrywise nonnegative matrix A ∈ Rm×n + is the smallest integer r such that A can be written as A = UV where U ∈ Rm×r + and V ∈ Rr×n + are both nonnegative. The nonnegative rank arises in different areas such as combinatorial optimization and communication complexity. Computing this quantity is NP-hard in general and it is thus important to find efficient bounding tec...
متن کاملNonnegative Rank Factorization via Rank Reduction
Abstract. Any given nonnegative matrix A ∈ R can be expressed as the product A = UV for some nonnegative matrices U ∈ R and V ∈ R with k ≤ min{m, n}. The smallest k that makes this factorization possible is called the nonnegative rank of A. Computing the exact nonnegative rank and the corresponding factorization are known to be NP-hard. Even if the nonnegative rank is known a priori, no simple ...
متن کاملCombinatorial bounds on nonnegative rank and extended formulations
An extended formulation of a polytope P is a system of linear inequalities and equations that describe some polyhedron which can be projected onto P. Extended formulations of small size (i.e., number of inequalities) are of interest, as they allow to model corresponding optimization problems as linear programs of small sizes. In this paper, we describe several aspects and new results on the mai...
متن کاملOn Reduced Rank Nonnegative Matrix Factorization for Symmetric Nonnegative Matrices
Let V ∈ R be a nonnegative matrix. The nonnegative matrix factorization (NNMF) problem consists of finding nonnegative matrix factors W ∈ R and H ∈ R such that V ≈ WH. Lee and Seung proposed two algorithms which find nonnegative W and H such that ‖V −WH‖F is minimized. After examining the case in which r = 1 about which a complete characterization of the solution is possible, we consider the ca...
متن کاملNonnegative Rank vs. Binary Rank
Motivated by (and using tools from) communication complexity, we investigate the relationship between the following two ranks of a 0-1 matrix: its nonnegative rank and its binary rank (the log of the latter being the unambiguous nondeterministic communication complexity). We prove that for partial 0-1 matrices, there can be an exponential separation. For total 0-1 matrices, we show that if the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 2014
ISSN: 0025-5610,1436-4646
DOI: 10.1007/s10107-014-0837-2